Abstract
In this paper we have suggested a procedure of measuring population change which takes into account fluctuating sequences of nuptiality and fertility schedules as they reflect a population’s response pattern to its changing socioeconomic conditions. Through numerical experiments, the two-sex population model of cyclical change, which considers the interaction between sexes through marriage, is seen to converge to an asymptotic stability. The advantage of such a convergence is to enable comparative investigations, in terms of a set of asymptotic parameters, of rather complex series of nuptiality and fertility changes and their implications for short-run oscillation in population structure as well as for long-run population growth.
The text of this article is only available as a PDF.
References
Becker, G. S. (
1960
). An economic analysis of fertility
National Bureau of Economic Research, Demographic and Economic Change in Developed Countries
. Princeton, N. J.
: Princeton University Press
.Coale, A. J. (
1970
). The use of Fourier analysis to express the relation between time variations in fertility and the time sequence of births in a closed human population
. Demography
, 7
, 93
–120
. 10.2307/2060026Goldberg, D. (
1964
). Fertility and fertility differentials: some observations on recent changes in the United States
. In Sheps, M. C., & Ridley, J. C. (Eds.), Public Health and Population Change
. Pittsburgh
: Pittsburgh University Press
.Grabill, W. H. (
1945
). Attrition life tables for the single population
. Journal of the American Statistical Association
, 40
, 231
–231
. 10.2307/2965630Lee, Che-Fu (
1971
). Asymptotic Implications of Fluctuating Fertility and Nuptiality: A Two-Sex. Population Model
. Chapel Hill
: Department of Sociology, University of North Carolina
.McFarland, D. D. (
1969
). On the theory of stable population: a new and elementary proof of the theorems under weak assumptions
. Demography
, 6
, 301
–322
. 10.2307/2060399McFarland, D. D. (
1970
). Effects of group size on the availability of marriage partners
. Demography
, 7
, 411
–416
. 10.2307/2060234Namboodiri, N. K. (
1969
). On the dependence of age structure on a sequence of mortality and fertility schedules: an exposition of a cyclical model of population change
. Demography
, 6
, 287
–299
. 10.2307/2060398Namboodiri, N. K. (
1970
). A method for comparative analysis of fertility dynamics represented by sequences of fertility schedules
. Demography
, 7
, 155
–167
. 10.2307/2060407Pollard, J. H. (
1969
). A discrete-time two-sex age-specific stochastic population program incorporating marriage
. Demography
, 6
, 185
–221
. 10.2307/2060391Ryder, N. B. et al (
1969
). The emergence of a modem fertility pattern: United States, 1917–66
. In Behrman, Samuel J. et al (Ed.), Fertility and Family Planning: A World View
. Ann Arbor
: University of Michigan Press
.Shah, B. V., and F. G. Giesbrecht. 1969. Mathematical models for changing marriage patterns. International Union for the Scientific Study of Population, General Conference, London.
U. S. Census of Population: 1960. Age at First Marriage. Final Report PC(2)-4D
. (1966
). Washington, D.C.
: Government Printing Office
.Marriage, Fertility, and Child-spacing: June 1965
. (1969
). Washington, D. C.
: Government Printing Office
.U. S. Department of Health, Education, and Welfare, Public Health Service, National Office of Vital Statistics. 1960. Fertility Tables for Birth Cohorts of American Women, Part I. Vital Statistic-Special Reports, Selected Studies, Vol. 51, No. 1 (January 29).
© Population Association of America 1972
1972