Abstract

If age-specific birth rates drop immediately to the level of bare replacement the ultimate stationary number of a population will be given by (9):
formula
multiplied by the present number, where b is the birth rate, r the rate of increase,
graphic
the expectation of life, and R0 the Net Reproduction Rate, all before the drop in fertility, and μ the mean age of childbearing afterwards. This expression is derived in the first place for females on the stable assumption; extension to both sexes is provided, and comparison with real populations shows the numerical error to be small where fertility has not yet started to drop. The result (9) tells how the lower limit of the ultimate population depends on parameters of the existing population, and for values typical of underdeveloped countries works out to about 1. 6. If a delay of 15 years occurs before the drop of the birth rate to replacement the population will multiply by over 2. 5 before attaining stationarity. The ultimate population actually reached will be higher insofar as death rates continue to improve. If stability cannot be assumed the ultimate stationary population is provided by the more general expression (7), which is still easier to calculate than a detailed projection.
The text of this article is only available as a PDF.

References

Bourgeois-Pichat, J. (
1968
).
The Concept of a Stable Population: Application to the Study of Populations of Countries with Incomplete Demographic Statistics. Population Studies, No. 39, ST/SOA/Series A/39
.
New York
:
United Nations
.
Bourgeois-Pichat, J. (
1970
).
Un taux d’accroissement nul pour les pays en voie de développement en l’an 2000—rêve ou réalité?
.
Population
,
25
,
957
974
10.2307/1530303.
Frejka, Tomas (
1968
).
Reflections on the demographic conditions needed to establish a U. S. stationary population growth
.
Population Studies
,
22
,
379
397
10.2307/2173002.
Keyfitz, N. (
1968
).
Introduction to the Mathematics of Population
.
Reading, Mass.
:
Addison-Wesley
.
Keyfitz, N. (
1969
).
Age distribution and the stable equivalent
.
Demography
,
6
,
261
269
10.2307/2060395.
Leslie, P. H. (
1945
).
On the use of matrices in certain population mathematics
.
Biometrika
,
33
,
183
212
10.1093/biomet/33.3.183.
Lotka, A. J. (
1939
).
Théorie analytique des associations biologiques. Part II. Analyse démographique avec application particulière à I’espèce humaine (Actualités Scientifiques et Industrielles, No. 780)
.
Paris
:
Hermann & Cie
.
Ryder, N. B. 1970. Letter of August 12.
Vincent, P. (
1945
).
Potentiel d’accroissement d’une population stable
.
Journal de la Société de Statistique de Paris
,
86
,
16
29
.
Whelpton, P. K. (
1936
).
An empirical method of calculating future population
.
Journal of the American Statistical Association
,
31
,
457
473
10.2307/2278370.