Resumen

Una proposición útil e intuitivamente atractiva en Demografía teórica asevera que la distribución por edades de una población humana cerrada es asintóticamente independiente de estaforma en un pasado lejano, y por 10 tanto esta exclusivamente determinada por la historia de la fecundidad y mortalidad queha prevalecido durante un período razonablemente largo de tiempo. En estetrabajo se sientan losfundamentos matemdticos de esie principio y se elaboran los detalles de su prueba después de enfatizaruna comprensión intuitiva del proceso a traves del cualuna distribución de edades tiende a “olvidar” su pasado. La tendencia de una tabla inalterable de tasas vitales apra producir una estructura de edadfija en una poblacion cerrada, es presentada como un corolario de la proposición principal tratada en este artículo.

Summary

A useful and intuitively appealing proposition in theoretical demography asserts that the age distribution of a closed human populationis asymptotically independent of this shapein thedistant past, and is therefore exclusively determined by the historyof fertility and mortalitythat has prevailed during a reasonably long period of time. The mathematical foundations of this ergodic principle arelaid out in this article and thedetailsof its proofareworked out afteremphasizing an intuitive understanding of the process through which an age distribution tends to “forget” its past. The tendency for an unchanging schedule of vital ratesto produce a fixed agestructure in a closed population, is presented as a corollary of the main proposition dealt with in this article.

The text of this article is only available as a PDF.

References

1
Ansley, J. Coale, “How the Age Distribution of a Human Population Is Determined,” in Cold Spring Harbor Symposia on Quantitative Biology, Vol. XXII (1957), pp. 83–88; and Ansley J. Coale and Melvin Zelnik, New Estimates of Fertility and Population in the United States (Princeton: Princeton University Press, 1963), pp. 82 ff.
2
Lopez, Alvaro (
1961
).
Problems in Stable Population Theory
.
Princeton
:
Office of Population Research
.
3
Lopez, Alvaro (
1961
).
Problems in Stable Population Theory
.
Princeton
:
Office of Population Research
.
4
Feller, William (
1941
).
On the Integral Equation of Renewal Theory
.
Annals of Mathematical Statistics
,
12
,
243
243
10.1214/aoms/1177731708.
5
Lotka, Alfred (
1934
).
Theorie Analytique des Associations Bilogiques
(pp.
65
65
).
Paris
:
Hermann et Cie
.
6
Lopez, Alvaro (
1961
).
Problems in Stable Population Theory
.
Princeton
:
Office of Population Research
.