Resumen

Este artículo presenta nuevasfórmulas para calcular la proporción eventual de sexos y la composición eventual de sexos por edad de la población que resultaría de determinadas condiciones de fecundi dad y mortalidad. Estas fórmulas proveen métodos más seguros y son de aplicación más amplia que los primeros méiodos que aparecieron en la literatura. Se ilustra la aplicación de estas fórmulas utilizando los datos disponsibles sobre las condiciones de fecunidad y mortalidad en Estados Unidos en 1964.

This content is only available as a PDF.

Summary

This article presents new formulas for calculating the eventual sex-ratio and the eventual age-sea composition of the population that would result from given fertility and mortality conditions. These formulas provide more accurate methods and are more widely applicable than earlier methods. The application of the formulas is illustrated through the use of available data on fertility and mortality conditions in the United States in 1964.

This content is only available as a PDF.

References

1
Karmel, P. H. (
1948
).
An Analysis of the Sources and Magnitudes of Inconsistencies between Male and Female Net Reproduction Rates in Actual Populations
.
Population Studies
,
II
,
240
73
10.2307/2171994.
2
Kendall, D. G. (
1949
).
Stochastic Processes and Population Growth
.
Journal of the Royal Statistical Society
,
XI
,
231
32
.
3
Keyfitz, N. (
1965
).
On the Interaction of Populations
.
Demography
,
II
,
276
88
10.2307/2060118.
4
Yerushalmy, J. (
1943
).
The Age-Sex Composition of the Population Resulting from Natality and Mortality Conditions
.
The Milbank Memorial Fund Quarterly
,
XXI
,
37
63
10.2307/3348206.
6
Leslie, P. H. (
1945
).
On the Use of Matrices in Certain Population Mathematics
.
Biometrika
,
XXXIII
,
183
212
10.1093/biomet/33.3.183.
7
E. M. Murphy, “A Generalization of Stable Population Techniques” (Ph. D. thesis, University of Chicago, 1966). See also N. Keyfitz, Introduction to the Mathematics of Population (Chicago: University of Chicago Press, 1968).
9
Leslie, P. H. (
1945
).
On the Use of Matrices in Certain Population Mathematics
.
Biometrika
,
XXXIII
,
183
212
10.1093/biomet/33.3.183.
13
Pollard, J. H. (
1966
).
On the Use of the Direct Matrix Product in Analysing Certain Stochastic Population Models
.
Biometrika
,
LIIII
,
397
416
.
15
Keyfitz, N. (
1965
).
The Intrinsic Rate of Natural Increase and the Dominant Root of the Projection Matrix
.
Population Studies
,
XVIII
,
293
308
10.2307/2173290.
17
Feller, W. (
1941
).
On the Integral Equation of Renewal Theory
.
Annals of Mathematical Statistics
,
XII
,
243
67
10.1214/aoms/1177731708.
21
Goodman, L. A. (
1953
).
Population Growth of the Sexes
.
Biometrics
,
IX
,
212
25
10.2307/3001852.
24
Keyfitz, N. (
1965
).
On the Interactions of Populations
.
Population Studies
,
XVIII
,
278
80
.
27
Keyfitz, N. (
1965
).
On the Interactions of Populations
.
Population Studies
,
XVIII
,
278
80
.
29
The latter special case is also considered by E. M. Murphy, op. cit. E. M. Murphy, “A Generalization of Stable Population Techniques” (Ph. D. thesis, University of Chicago, 1966). See also N. Keyfitz, Introduction to the Mathematics of Population (Chicago: University of Chicago Press, 1968).
30
Goodman, L. A. (
1953
).
Population Growth of the Sexes
.
Biometrics
,
IX
,
215
8
.