Abstract

The “problem of the sexes” has been one of trying to reconcile inconsistent male and female demographic rates. The present paper deals with that question in the context of a two-sex nuptiality-mortality life table. A “rectangular” population, with equal numbers of persons in each age-sex group, is introduced as a standard, and a standardization relationship expressed in equation (9) relates changes in rectangular population rates to changes in age-sex composition. The standardization relationship is shown to satisfy a number of desirable properties and produce a realistic two-sex model. The standardization approach is then applied to data from Sweden for 1973, and the results and their implications are discussed. In particular, it is seen that the total number of marriages in a two-sex population neither is nor should be bounded by the total numbers of marriages in the associated male and female one-sex nuptiality-mortality tables.

The text of this article is only available as a PDF.

References

Bartlett, M. S. (
1973
).
A Note on Das Gupta’s Two-Sex Population Model
.
Theoretical Population Biology
,
4
,
418
424
. 10.1016/0040-5809(73)90018-X
Coale, Ansley J. (
1972
).
Growth and Structure of Human Populations
.
Princeton
:
Princeton University Press
.
Das Gupta, P. (
1972
).
On Two-Sex Models Leading to Stable Populations
.
Theoretical Population Biology
,
3
,
358
375
. 10.1016/0040-5809(72)90009-3
Das Gupta, P. (
1973
).
Growth of U.S. Population, 1940–1971, in the Light of an Interactive Two-Sex Model
.
Demography
,
10
,
543
565
. 10.2307/2060882
Das Gupta, P. (
1976
).
An Interactive Nonrandom-Mating Two-Sex Model Whose Intrinsic Growth Rate Lies Between One-Sex Rates
.
Theoretical Population Biology
,
9
,
46
57
. 10.1016/0040-5809(76)90034-4
Frederickson, A. G. (
1971
).
A Mathematical Theory of Age Structure in Sexual Populations: Random Mating and Monogamous Marriage Models
.
Mathematical Biosciences
,
10
,
117
143
. 10.1016/0025-5564(71)90054-X
Goodman, L. A. (
1953
).
Population Growth of the Sexes
.
Biometrics
,
9
,
212
225
. 10.2307/3001852
Goodman, L. A. (
1967
).
On the Age-Sex Composition of the Population That Would Result from Given Fertility and Mortality Conditions
.
Demography
,
4
,
423
441
. 10.2307/2060290
Goodman, L. A. (
1968
).
Stochastic Models for the Population Growth of the Sexes
.
Biometrika
,
55
,
469
487
. 10.1093/biomet/55.3.469
Henry, L. (
1969
).
Schemas de Nuptialité: Déséquilibre des Sexes et Célibat
.
Population
,
24
,
457
486
. 10.2307/1527789
Henry, L. (
1969
).
Schemas de Nuptialité: Déséquilibre des Sexes et Âge au Marriage
.
Population
,
24
,
1067
1122
. 10.2307/1529735
Henry, L. (
1972
).
Nuptiality
.
Theoretical Population Biology
,
3
,
135
152
. 10.1016/0040-5809(72)90023-8
Hoem, J. M. (
1969
).
Concepts of a Bisexual Theory of Marriage Formation Sãrtryck ur Statistisk
.
Tidskrift
,
4
,
295
300
.
Jordan, Chester W. (
1967
).
Life Contingencies
. 2d ed
Chicago
:
Society of Actuaries
.
Karmel, P. H. (
1948
).
An Analysis of the Sources and Magnitudes of Inconsistencies Between Male and Female Net Reproduction Rates in Actual Populations
.
Population Studies
,
2
,
240
273
. 10.2307/2171994
Kendall, D. G. (
1949
).
Stochastic Processes and Population Growth
.
Journal of the Royal Statistical Society, Series B
,
11
,
230
264
.
Keyfitz, Nathan (
1968
).
Introduction to the Mathematics of Population
.
Reading
:
Addison-Wesley Publishing Company
.
Keyfitz, Nathan (
1971
).
The Mathematics of Sex and Marriage
Volume 4 of the Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability
(pp.
89
108
).
Berkeley
:
University of California Press
.
McFarland, D. D. (
1970
).
Effects of Group Size on the Availability of Marriage Partners
.
Demography
,
7
,
411
415
. 10.2307/2060234
McFarland, D. D. (
1972
).
Comparison of Alternative Marriage Models
. In Thomas N. E. Greville (Ed.),
Population Dynamics
(pp.
89
106
).
New York
:
Academic Press
.
McFarland, D. D. (
1975
).
Models of Marriage Formation and Fertility
.
Social Forces
,
54
,
66
83
. 10.2307/2576078
Parlett, B. (
1972
).
Can There Be a Marriage Function?
. In Thomas N. E. Greville (Ed.),
Population Dynamics
(pp.
107
135
).
New York
:
Academic Press
.
Pollard, John H. (
1969
).
A Discrete-Time Two-Sex Age-Specific Stochastic Population Program Incorporating Marriage
.
Demography
,
6
,
185
221
. 10.2307/2060391
Pollard, John H. 1971. Mathematical Models of Marriage. Paper presented to the Fourth Conference on the Mathematics of Population in Honolulu, July 28–August 1, 1971.
Pollard, John H. (
1975
).
Modelling Human Populations for Projection Purposes—Some of the Problems and Challenges
.
Australian Journal of Statistics
,
17
,
63
76
. 10.1111/j.1467-842X.1975.tb00939.x
Preston, Samuel H., Keyfitz, N., & Schoen, R. (
1972
).
Causes of Death: Life Tables for National Populations
.
New York
:
Seminar Press
.
Schoen, Robert (
1975
).
Constructing Increment-Decrement Life Tables
.
Demography
,
12
,
313
324
. 10.2307/2060768
Schoen, Robert, & Land, K. C. (
1976
).
Finding Probabilities in Increment-Decrement Life Tables: A Markov Process Interpretation. Program in Applied Social Statistics Working Paper 7603
.
Urbana
:
Department of Sociology, University of Illinois Urbana-Champaign
.
Schoen, Robert, & Nelson, V. E. (
1974
).
Marriage, Divorce, and Mortality: A Life Table Analysis
.
Demography
,
11
,
267
290
. 10.2307/2060563
Sweden, Statistiska Centralbyrån (
1974
).
Befolknings Förändringar 1973
.
Stockholm
:
Statistiska Centralbyrån
.
Yellin, Joel, & Samuelson, P. A. (
1977
).
Comparison of Linear and Non-Linear Models for Human Two-Sex Population Dynamics
.
Theoretical Population Biology
,
11
,
105
126
. 10.1016/0040-5809(77)90010-7